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Abstmd. The q-deformed venion of a two-dimensional toy interacting boson model ( IBM)  
with the symmetry SU,(3) 3 SU,(2) 3 SO,@) is constructed. Energy spectra and transition 
matrix elements are calculated, the latter being found to be much more sensitive to 
9-deformation than the former. Arguments in favour of the 9-generalization of the full 
IBM are given. 

Quantum algebras [ 1-41, which from the mathematical point of view are Hopf algebras 
as pointed out in [3], are recently attracting much attention in physics, especially after 
the introduction of the q-deformed harmonic oscillator [S-71. Initially used in the 

have been subsequently used in conformal field theories [lo, 111, in the description of 
spin chains [12,13], as well as in the description of squeezed states [14]. In nuclear 
physics the q-rotator having the symmetry SUJ2) has been successfully used for the 
description of rotational spectra of deformed [ lS,  161 and superdeformed [17] nuclei, 
and its equivalence to the variable moment of inertia (VMI) model has been demon- 
strated [la]. The deformation parameter T* (with q =e") of the SU,(2) model has been 
found [la] to correspond to the softness parameter of the VMI model, thus indicating 
that the q-deformation of the ususal SU(2) algebra is physically well motivated. 
Applications of SU,(Z) and SU,(l, 1)  symmetries in rotational [18] and vibrational 
[19,20] spectra of diatomic molecules also exist. All these applications, however, are 
confined to the relatively simple SU,(2) and SU,(l, 1) algebras. On the other hand, 
algebraic models using more complicated algebras have been in recent years very 
3U*CC~31"1 111 uG=*,,",,,& ,uw-.ynug *"II=*II*c apc*na U L  l L l G Y l Y L l l  a,." rLGa*y ll la5b ,,Y~,C, 

away from closed shells, in which the use of the shell model is not yet possible. The 
most widely used algebraic model of nuclear collectivity is the interacting boson model 
(IBM) ([XI, for recent overviews see [22,23]), in the simplest version of which low-lying 
collective nuclear spectra are described in terms~ of s (I = 0) and d ( J  = 2) bosons, 
which are supposed to be correlated fermion pairs. The symmetry of the simplest 
version of the model is U(6), which contains U(5) (vibrational), SU(3) (rotational) 
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and O(6) (y-unstable) chains of subalgebras. A simplified version of the model, having 
the SU(3) symmetry with SU(2) and SO(3) chains of subalgebras also exists [24]. It 
can be considered as a toy model for two-dimensional nuclei, but it is very useful in 
demonstrating the basic techniques used in the full IBM. 

In the present letter we attempt the first application of quantum algebras beyond 
SU,(2) or SU,(1,1) in nuclear physics, by constructing a q-generalization of the 
two-dimensional toy IBM. The model has the SU,(3) symmetry, which possesses an 
SUq(2) subalgebra. Its construction gives several hints about the possible a-generaliz- 
ation of the full IBM and its passible usefulness. A source of motivation towards 
constructing the q-generalization of the IBM is the recent proof [ 2 5 ]  that the description 
of fermion pairs of zero angular momentum ( I = O )  in a single-j shell in terms of 
q-bosons is much simpler than their description in terms of usual bosons, which is an 
indication that q-bosons might be more appropriate than usual bosons for the descrip- 
tion of correlated fermion pairs. 

In the classical version of the toy IBM [24] one introduced bosons with anguiar 
momentum m =0, *2, represented by the creation (annihilation) operators a:, a:, 
a? (ao,  a+, a-). They satisfy usual boson commutation relations 

[a,, at]=  6, (1) 

A..  'I = ata.  (2) 

[A,, Aril = SjkAa - StiAjr (3) 

[a,, a,] = [a: ,  af ]  = 0. 

The nine bilinear operators 

satisfy then the commutation relations 

which are the standard U(3) commutation relations. The total number of bosons 

(4j I A 

N ~ = ~ , i A i i = a o a , t a ; a + t a _ a _  

is kept constant. 

where A, are the generators of U,(3) and the q-commutator is defined as 
In the quantum case one has the UJ3) commutation relations given in table 1 [261, 

[A, E], =AB - ¶BA. ( 5 )  

In order to obtain a realization of U,(3) in terms of q-bosons, satisfying the commuta- 
tion relations [5-71 

(6) N atat- q-'a:aj = q + +  aiai -qat  

and satisfying 

a : a , = [ N , ]  +a: = [ N: + 11 
where 

is the definition of q-numbers, one starts with [27] 

A,, = .:a2 A,, = a:a, 

(7) 

(9 )  
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Table I. UJ3) commutation relations [ 26 ] ,  given in the form [A, B]. = C. A is given in 
the first column, B in the first row. C is given at the intersection ofthe row containing A 
with the column containing B. a, when different from I ,  follows C, enclosed in parentheses. 

A!! 
0 
0 
0 

- 4 2  
0 

One can easily verify that the UJ3) commutation relations involving these generators 
are satisfied. For example, one has 

[::) 

(12) 

r *  A l - r L T  ?.,I 
L f i 1 2 , f l 2 1 J - L 1 * 1 - I * 2 J  

[Anr Ai21 = [Nz- Nil 

using the identity 

[Nil[ N/ + 11 -[ Nj][Ng+ l]=[Ni - N,] (13) 

.I?d !he ideEtifcEtinr?s 

N I = A I I  N2 = A,, N, = A,, . (14) 

One can now determine the boson realizations of A,, and A,, from other commutation 
relations, as follows 

A,, =[A,,, AZ3lq = a:a,q-N2 

A,,=[A,,, A,,],-l=a:a,qY. 

Using (13) once more one can verify that the relation 

[Ai i ,Ai i I=[Ni-Ni l  (17) 

verify :hi?$ a!! ca"??!a!ia!! .e!.tians af t.b!e ! are f..!f;.!!ed by !he bason i.l..sges. 
is fulfilled by the boson images of (15), (16). It is by now a straightforward task to 

obtained above. 
So far we have managed to write a boson realization of U,(3) in terms of three 

q-bosons, namely a] ,  a,, ax.  Omitting the generators involving one of the bosons, one 
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is left with an SUJ2) subalgebra. Omitting the generators involving a,, for example, 
one is left with AI2, A,, , N I ,  N z ,  which satisfy the SU,(Z) commutation relations [S-71 

[ J + ,  J-l=[2Jo1 [Jo ,  J+l=*J* (18) 
where the identifications 

J+=Ai, J- =A,,  io =;( N, - N,) (19) 
have been made. Jo alone forms an SO,(2) subalgebra. Therefore the relevant chain 
of subalgebras is 

SUJ3) 3 SUJ2) =I SO$). 

C2(SU,(2)) = J 2  = J_J+ + [Jo][Jo+ I]. 

(20) 

(21) 

The second-order Casimir operator of SU,(2) is known to have the form [5-71 

Substituting the above expressions for the generators one finds 

All of the above equations go to their classical counterparts by allowing q +  1, for 
which [x]+x, i.e. q-numbers become usual numbers. In the classical case [24] out of 
the three bosons (ao, a+ ,  a - )  forming SU(3), one chooses to leave out ao, the boson 
with zero angular momentum, in order to be left with the SU(2) subalgebra formed 
by a+ and a-, the two bosons of angular momentum 2. The choice of the SU,(2) 
subalgebra made above is then consistent with the following correspondence between 
classical bosons and q-bosons 

a++aI a_-,o,  ao+a3. (23) 
(We have opted for using different indices for usual bosons and q-bosons in order to 
avoid confusion.) 

In the classical case [24] the states of the system are characterized by the quantum 
numbers characterizing the irreducible representations (irreps) of the algebras appear- 
ing in the classical counterpart of the chain of equation (20). For SU(3) the total 
number of bosons N is used. For SU(2) and SO(2) one can use the eigenvalues of J 2  
and Jo, or, equivalently, the eigenvalues of a:a++aTa_ and L,=4J0, for which we 
use the symbols nd (the number of bosons with angular momentum 2) and M. Then 
the basis in the classical case can be written as [24] 

In the quantum case for each oscillator one defines the basis as [5-71 

where the q-factorial is defined as 
[NI! = [N][N - 1][N -21. . . [2][1]. 

Then one has [S-71 
N , I N )  = N,INJ  
otlN,)  =-INi+ 1)  

a i l N O = m I N i  - 1 )  
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so that the full basis in the q-deformed case is 

where N = N I  + N2+ N,  is the total number of bosons, nd = N ,  + N2 is the number of 
bosons with angular momentum 2, and M is the eigenvalue of L = 4J0. nd takes values 
from 0 up to N, while for a given value of nd, M takes the values *2nd ,  * 2 ( n d  - I ) ,  
+ Z ( t i d  -21,. . . , ~2 or 0, 6epeii:ing on wheiiier i id is 06: oi even [XI, in this bask 
the eigenvalues of the second-order Casimir operator of SU9(2) are then 

In the case of N = 5 one can easily see that the spectrum will be composed by the 
ground state band, consisting of states with M = 0,2 ,4 ,6 ,8 ,10  and n, = M / 2 ,  the first 
excited band with states characterized by M=O,2 ,4 ,6  and nd = M / 2 + 2 ,  and the 
second excited band, containing stztes with M = 0,Z and nd = M / 2 + 4 .  

In the case that the Hamiltonian has the SU,(2) dynamical symmetry, it can be 
written in terms of the Casimir operators of the chain (20). Then one has 

H = E,,+AC2(SU,(2))+ BC2(S09(2))  (32) 
where Eo, A,  B are constants. Its eigenvalues are 

E = & + A [ $ ] [  $+ 1 1  +EM2.  (33) 

Realistic nuclear spectra are characterized by strong electric quadrupole transitions 
among the levels ofthe same band, as well as by interband transitions. In the framework 
of the present toy model one can define, by analogy to the classical case 1241, quadrupole 
transition operators 

Q+ = a:a3 f .:a2 

Q- = ala,+a;a,. 

(34) 

( 3 5 )  
In order to calculate transition matrix elements of these operators one only needs 
equations (28), (29), i.e. the action of the q-boson operators on the q-deformed basis. 
The selection rules, as in the classical case, are AM = *2, And = * I ,  while the corre- 
sponding matrix elements are 

q(N, n d +  1, M*ZIQ+IN, n d .  M ) ,  = d- (36) 

(37) J N ,  n, - 1. M*Z(Q,IN, n d .  M ) ? =  i /TN-nd +111%?1. 
V -  L r  4 J  

From these equations it is clear that both intraband and interband transitions are 
possible. 

In order to get a feeling of the qualitative changes in the spectrum and the transition 
matrix elements resulting from the q-deformation of the model, we make a simple 
calculation for a system of twenty bosons ( N  = 20). We distinguish two cases: 

(I) q can be real (q =e', with T real), in which case q-numbers can be written as 

sinh 7x 

sinh 7 
[XI=-. 
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(ii) q can be a phase (q =e'?, with T real), in which case q-numbers can be put in 
the form 

sin TX 
[.XI=-. 

sin T 
(39)  

In order to isolate the effects of q-deformation in the spectrum, we consider a 
Hamiltonian (32) with Eo = 0, A = 1, B = 0. As we have already remarked, the ground 
siaie band contains states characierized by ivi = in,. Resuits for the iowesi i6  members 
of the ground state band are reported in table 2 for the classical case ( T  = 0), as well 
as for the two q-deformed cases (q real, q a phase) for two different values of the 
deformation parameter ( T = 0.05, 0.1). We remark that when q is real the spectrum is 
increasing more rapidly than in the classical case, while when q is a phase the spectrum 
increases more slowly than in the classical case. This is in agreement with the findings 
of the q - ~ k ! o r  mode! [ !5 - !8 ! ,  which in equiv~!en? ?n the vu! mode! fer n .I hein- U----- I - 
phase, with T having a well defined physical meaning (7' is equivalent to the softness 
parameter of the VMI model [ 161). 

In table 3 we report for the same cases results for the transition matrix element 

q(N, n,+l,M+2IQ+IN,nd,M)q (40) 

which within the ground state band (where M = 2nd)  takes the form (see equation ( 3 6 ) )  

Results up to nd = 9 are reported, since the matrix elements for nd and N - nd - 1 are 
equal, as is easily seen from (41). We remark that the transition matrix elements in 
the case that q is real increase more rapidly than in the classical case, while they 
increase less rapidly than the classical case when q is a phase. We also remark that 
transition matrix elements are much more sensitive to q-deformation than energy 
spectra. This is an interesting feature, showing that q-deformed algebraic models can 
be much more flexible in the description of transition probabilities than their classical 
counterparts. 

Table 2. The lowest ten members of the ground State band of a system of twenty bosons 
( X  = 20) described by the iiamiitonian ( j i j  with Eo = 0, A = i ,  B = 0. Xesuirs far rhe 
classical case, as well as for the q-deformed cases with q real and q a phase are reported. 
See text for further discussion. 

T = 0.05 r=0.1 
1.=0 

nd classical real phase real phase 

1 0.75 0.75 0.75 0.75 0.75 
2 2.00 2.00 2.00 2.01 1.99 
3 3.75 3.76 3.74 3.79 3.71 
4 6.00 6.03 5.97 6.11 5.89 
5 8.75 8.81 8.69 8.99 8.51 
6 12.00 12.12 11.89 12.47 11.55 
7 15.75 15.95 15.55 16.57 14.97 
8 20.00 20.33 19.68 21.33 18.73 
9 24.75 25.25 24.25 26.81 22.81 

10 30.W 30.75 29.27 33.07 27.16 
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Table3. ~eBrsttentransitianmatrixelcments,(N, " , + I ,  M+ZIQ+IN, nd, M), (equation 
(41)) among the levels of the ground state band (in which M =2n,) of a system of twenty 
bosons ( N  =20). The classical results are reported, along with the q-deformed results for 
q real and q a phase. See text for further discussion. 

7 = 0.05 r=0.1 
7 = 0  

n* classical real phase real phase 

0 4.47 
1 6.16 
2 7.35 
3 8.25 
4 8.94 
5 9.49 
6 9.90 
7 10.20 
8 10.39 
9 10.49 

4.85 
6.63 
7.86 
8.77 
9.47 
10.lm 
10.41 
10.70 
10.88 
10.97 

4.10 
5.70 
6.85 
7.73 
8.43 
8.98 
9.40 
9.71 
9.92 

10.02 

6.02 
8.10 
9.45 

10.41 
11.11 
11.62 
12.00 
12.26 
12.43 
12.51 

3.02 
4.34 
5.37 
6.22 
6.93 
7.52 
7.98 
8.33 
8.56 
8.67 

It should be noticed that the classical SU(3) toy model [24] considered here has, 
in addition to the above-mentioned and q-deformed SU(2) chain of subalgebras, an 
SO(3) chain. However, no S0,(3) snbalgebra of the SU,(3) algebra has been obtained 
up to now [28]. 

In conclusion, we have developed the q-deformed generalization of a two- 
dimensional toy IBM model with SU,(3) 3 SU9(2) 3 S09(2) symmetry. Spectra and 
transition matrix elements are inlluenced in different ways depending on whether q is 
real or a phase. Transition matrix elements are much more sensitive to q-deformation 
than energy levels. Therefore the development of q-deformed algebraic models appli- 
cable to realistic nuclei appears promising and will be pursued. In addition, the success 
of the q-rotator model [15-181 with SU,(Z) symmetry in the description of rotational 
spectra suggests that its consequences for transition probabilities [29] should be 
examined. Work in these directions is in progress. 

Support from the EEC is gratefully acknowledged by one of us (DB). 
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